Introduction to Magnetic Fusion Research

Mike Mauel

Columbia University http://www.columbia.edu/~mem4/

National Undergraduate Fusion Fellowship Program 8 June 2000

Friday, June 5, 2009

Today is an Exciting Time for Fusion

- Tremendous progress in <u>understanding</u> how to confine & control high-temperature matter
- Experiments are extending the limits technology: superconductivity, lasers, heat sources, advanced materials, systems control, and scientific computation,...
- Operational "certification" achieved at National Ignition Facility (NIF) (See Dan Clark's talks on Thur-Fri.)
- International community to build ITER: the first burning plasma experiment at the scale of a power plant & the world's largest energy science partnership.

Official Declassification of Controlled Thermonuclear Fusion Research

- Geneva, September 1958, "Second UN Conference on Peaceful Uses of Atomic Energy"
- 5,000 delegates, 2,150 papers
- Fusion research in U.S., U.K., and U.S.S.R. declassified

Friday, June 5, 2009

My Fusion Viewpoint

- Fusion energy science is still a "young" field
- Fusion energy is still "science-based" R&D
- Like other energy sources, fusion power plants have configuration options. Future fusion power plants will probably look different from today's experiments.
- Discoveries ahead!
- While fusion systems appear complicated and expensive, fusion has overwhelming advantages as a sustainable carbon-free energy source.

Friday, June 5, 2009

Magnetic Fusion Research Outline

- Fusion primer
- Fusion: "Green" nuclear power
- Magnetic fusion energy primer
- ITER: Fusion at the scale of a power plant
- Columbia University's plasma physics experiments

Forces of Nature

Gravity	Tidal Energy
Electromagnetic/ Molecular	Combustion, Batteries, "Everyday" Energy and Chemistry
Weak/Radiation	Geothermal Energy
Strong/Nuclear	Fission, Fusion, and Solar (including wind, hydro,)

Friday, June 5, 2009

Chemical vs. Nuclear Energy Density

Liquid CO2 Coal (1 ton @ 1500 psi)

Oil

LNG

Grass

H2 (4500 psi)

3/4 cup of U ore (0.003% 235U)

16 FL OZ Water (0.015% D/H)

Why Fission is (Relatively) Easy to Do...

Friday, June 5, 2009

Why Fusion is (Really, Really) Hard to Do...

Fusion in our Sun

- 90% H, 9% He, 1% others
- Solar core: 15,000,000°
- (H + H) fusion rate limited by "Deuterium Bottleneck" or by high coulomb barrier in (H + C), (H + N) (Hans Bethe, Nobel 1967)
- Low power density (~1,000 W/m³) with >
 6 billion year burn-up time!

Proton (hydrogen) fusion can not be used for a power plant. It's too slow!

Friday, June 5, 2009

100-300 s after the "Big-Bang": The Age of Fusion

History of the Universe

- At 100 sec, the universe cools to 1,000,000,000°
- Protons and neutrons fuse to Deuterium (heavy hydrogen). The whole universe is a "burning plasma"!
- D + D \rightarrow ³He + p D + D \rightarrow T + p D + T \rightarrow ⁴He + n D + ³He \rightarrow ⁴He + p
- At 300 sec, nearly all D has fused to ⁴He. Universe cools and expands. Fortunately...

Friday, June 5, 2009

Deuterium (also ³He and Lithium): Nature's Gift from the "Big Bang"!

- After the "Age of Fusion", the Universe consists of hydrogen (90%), ⁴He (9%), D (0.02%), ³He (0.01%) and a pinch of Li.
- Heavy elements, including uranium, created billions of years later in exploding stars.
- I g of D yields 4 MW-days (4 times I g U²³⁵)

Friday, June 5, 2009

13

Fusion Reactions for Earthly Power

 $D + T \rightarrow {}^{4}\text{He}(3.5\text{MeV}) + n(14.1\text{MeV})$ $D + {}^{3}\text{He} \rightarrow {}^{4}\text{He}(3.6\text{MeV}) + H(14.7\text{MeV})$ $D + D \rightarrow {}^{3}\text{He}(0.82\text{MeV}) + n(2.45\text{MeV})$ $D + D \rightarrow T(1.01\text{MeV}) + H(3.02\text{MeV})$

- Coulomb barrier sets the fusion's high temperature: T > 15 keV (170,000,000 K)
 Fusion involves high-temperature matter called "plasma".
- 33 g D in every ton of water, but no T and ³He resources exist on earth.

Friday, June 5, 2009

D-T (⁶Li) Fusion: Easiest Fuel for Laboratory Power

 ${\sf D}+\,^6{\sf Li}+f imes[^9{\sf Be}]$ (with $f\ll 1$)

Plasma : $D + T \rightarrow {}^{4}He(3.5MeV) + n(14.1MeV)$ Blanket : ${}^{6}Li + n \rightarrow {}^{4}He(2.05MeV) + T(2.73MeV)$ $f \times [{}^{9}Be + n \rightarrow 2({}^{4}He) + 2n - 1.57MeV]$

 $\approx 2(^{4}\text{He}) + (3.5 \text{ MeV plasma}) + (18.8 \text{ MeV blanket})$

- D-T fusion has largest cross-section and lowest T ~ 170,000,000°.
- Tritium is created from ⁶Li forming a self-sufficient fuel cycle.
 Practically no resource limit (10¹¹ TW y D; 10⁴(10⁸) TW y ⁶Li)!
- Notice: ~ 80% of energy as fast neutrons (~ 1.5 m shielding).
 - the source of fusion's technology & materials challenge.

15

Fast n

Other fuel cycles are possible, but more challenging, e.g. D-D (³He) Fusion

6D

- Significantly reduced fast neutron flux!! Most energy to plasma and then first wall. Simplifies fusion component technologies.
- Next easiest fusion fuel cycle, but requires confinement ~25 times better than D-T(Li) and T extraction from plasma (i.e. only MFE).
- Equally challenging, but exciting, D-D options exist for IFE.

Friday, June 5, 2009

Self-Sustained Fusion Burn

(2)

 $\frac{W_p}{\tau_F} + P_{rad} = (\text{Charged Particle Fusion Power})$

- Lawson's condition
- τ_E is energy confinement time
- Only three reactions can be used within a thermonuclear fusion power plant: (i) D-D, (ii) D-T, (iii) D-He³

 $D + He^3 \longrightarrow He^4(3.6 \text{ MeV}) + p(14.7 \text{ MeV})$ (3)

Neutrons escape and heat surrounding blanket

Self-Sustained Fusion Burn

Friday, June 5, 2009

Magnetic Containers are Toroidal


```
Friday, June 5, 2009
```

21

Can Fusion be "Green" Nuclear Power?

- No public evacuation plan. Low tritium inventory. Max offsite dose <1 rem; public and worker safety is assured in all events.
- No long term storage of radioactive material.
- While international inspection/monitoring will still be required, fusion does not need any fertile/fissile material.
- Work still needed to demonstrate safety and environmental advantages of fusion...

Fusion's Materials Challenge

- When fabricated from low activation materials, fusion will not produce long-lived radioactive by-products.
- Fusion's **materials challenge** is to develop long-life, high-strength materials with high neutron-irradiated fracture toughness, good helium swelling resistance, and low tritium retention.
- Good options exist: Ferritic/martensitic steels, Vanadium alloys, Tungsten first wall, SiC/SiC composites, new nano-engineered materials, ...

Friday, June 5, 2009

Attractive Low Activation Material Options for D-T Fusion

Friday, June 5, 2009

25

Two Approaches to Fusion Power

Inertial Fusion Energy (IFE)

• Fast implosion of high-density fuel capsules.

Reaches ~ 200 Gbar from 25-35 fold radial convergence.

- Several ~ 350 MJ (0.1 ton TNT) explosions per second.
- Magnetic Fusion Energy (MFE)
 - Strong magnetic pressure (100's atm) confine low-density (10's atm) plasma.
 - Particles confined within "toroidal magnetic bottle" for at least ~ 10 km and 100's of collisions per fusion event.
 - Fusion power density (~10 MW/m³ and 20,000 × solar) allows plasma to be sustained for continuous power.

Two Approaches to Fusion Power

Inertial Fusion Energy (IFE)

- $n \sim 10^{30} \text{ m}^{-3}$ T ~ 20 keV $\tau_E \sim 0.5 \text{ nsec}$ (n T $\tau_E \sim 10^{22}$)
- 30 times more particle density than diamond!

Magnetic Fusion Energy (MFE)

- $n \sim 10^{20} \text{ m}^{-3}$ T ~ 20 keV $\tau_E \sim 5.0 \text{ sec}$ (n T $\tau_E \sim 10^{22}$)
- 250,000 times less particle density than air!

MFE is 10¹⁰ slower and less dense than IFE

Friday, June 5, 2009

MFE: Low Density Implies Long Mean-Free Path

- Coulomb collisions 100 times more frequent for D-T ions than for fusion events. (10,000 times more frequent for electrons!)
- Neutral charge-exchange cross-section is 30,000,000,000 times larger than fusion cross-section, so plasma must be fullyionized and "thick", >2 m, to prevent gas penetration
- At 20 keV, mean-free-path for coulomb collisions about 10 km
- Magnetic confinement requires ion confinement for >1,000 km (620 miles!)

MFE plasma dynamics is nearly "collisionless"

Friday, June 5, 2009

How Do Magnetic Fields Confine Ionized Matter?

Fast motion in all directions

$$\frac{d\mathbf{v}}{dt} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$
Without magnetic field
$$\mathbf{E} = \mathbf{E} + q\mathbf{v} \times \mathbf{B}$$
Fast motion only along B-lines
With magnetic field
$$\mathbf{E} = \mathbf{E} + q\mathbf{v} \times \mathbf{B}$$
With magnetic field
$$\mathbf{E} = \mathbf{E} + \mathbf{E} +$$

B = 2 T and T = 20 keV, then gyroradius \approx 1cm but must be confined along B-lines for hundreds of miles!!!

How to make a magnetic torus?

Toroidal Field from Poloidal Coils

Friday, June 5, 2009

How to make a magnetic torus?

Poloidal Field from Toroidal Coils

How to make a magnetic torus?

Combined Toroidal and Poloidal Field (Tokamak) Friday, June 5, 2009

How to make a magnetic torus?

Combined Toroidal and Poloidal Field (Stellarator)

How Do Magnetic Fields Confine Ionized Matter? Equations of magnetic confinement... Plasma

How Do Magnetic Fields Confine Ionized Matter?

Surfaces of constant plasma pressure form nested tori

MFE Configuration Optimization Depends on Shape

Fundamentally, the behavior of magnetically-confined plasma depends upon the **shape** of the magnetic flux tube...

Friday, June 5, 2009

37

Many Toroidal Shapes Confine Plasma

MFE Example: "Shape" Change with Toroidal Fleld

Increasing Toroidal Field

Magnetic Surface

Magnetic Field Line

Tokamak Plasma (safety factor q = 4)Friday, June 5, 2009

Spherical Torus Plasma (safety factor q = 12)

Spheromak Plasma (safety factor q = 0.03)

Friday, June 5, 2009

Over 100 Tokamaks

Rapid Progress

(through larger size)

Friday, June 5, 2009

Significant Fusion Power already Produced in the Lab

- 2.5 MW/m³ achieved in TFTR!
- Establishes basic
 "scientific feasibility", but
 power out < power in.
- Fusion self-heating, characteristic of a "burning plasma", has yet to be explored.
- The technologies needed for net power must still be demonstrated.

Fusion power development in the D-T campaigns of JET (full and dotted lines) and TFTR (dashed lines), in different regimes: (la) Hot-Ion Mode in limiter plasma; (lb) Hot-ion H-Mode; (II) Optimized shear; and (III) Steady-state ELMY-H Modes.

MFE Research Requires Understanding Plasma Physics and Motivates Plasma Physics

- High-power EM wave injection, heating and current drive, energetic particle interactions...
- Plasma-surface interactions, radiation, recombination, and mass flow in plasmas...
- How does magnetic field structure impact confinement?
 - Achieving plasma stability at high pressure through "optimization of magnetic shape"
- How does turbulence cause heat, particles, and momentum to escape?
 - Suppression of plasma turbulence: the "Transport Barrier"

Friday, June 5, 2009

45

Three Examples

- Turbulence and fluctuations and transport
- Plasma control of instabilities
- Shape variation of magnetic confinement

Measurement ⇔ Theory ⇔ Simulation

Friday, June 5, 2009

HBT-EP Succeeds to Stabilize Plasmas in NYC!

International Thermonuclear Experimental Reactor

http://www.iter.org/

Friday, June 5, 2009

2006 Global Energy Prize

Evgeniy Velikhov

Yoshikawa Masaji

Robert Aymar

For the development of scientific and engineering foundation for building the International Thermonuclear Experimental Reactor (ITER) Project

Friday, June 5, 2009

53

Burning Plasma Experiment

- Demonstrate and study strong fusion self-heating in near steady-state conditions:
 - Strongly self-heating:
 - 500 MegaWatts; Fusion power gain ~ 10
 - ~ 70 % self-heating by fusion alpha particles
 - Near steady state:
 - 300 to > 3000 seconds; Many characteristic physics time scales
 - Technology testing
 - Power plant scale
- Numerous scientific experiments and technology tests.
- Demonstrate the **technical feasibility** of fusion power.

Friday, June 5, 2009

Benefits from Comprehensive Component R&D

Sector-B (1/2 Sector)

Sector-A (1/2 Sector)

View of full-scale sector model of ITER vacuum vessel completec in September 1997 with dimensional accuracy of ± 3 mm

Benefits from Comprehensive Component R&D

Largest High-Field Superconducting Magnet is World: 640 MJ and 13T!

Friday, June 5, 2009

Coordinating an International Team

Seoul Korean Participant Team Beijing Chinese Participant Team ORNL US Participant Team

Cadarache Joint Work Site Garching Joint Work Site International Team European Participant Team

Moscow/St.Petersburg Russian Participant Team

New Delhi/Mumbai Indian Participant Team

Naka Joint Work Site International Team Japanese Participant Team

+ Kazakhstan (?)

John Holdren's AAAS Presidential Lecture (February 2007) Four Key S&T Challenges

- Meeting the basic needs of the poor
- Managing competition for land, soil, water, and the net productivity of the planet
- Mastering the energy-economy-environment dilemma
- Moving toward a nuclear-weapon-free world

And the biggest challenge: "Providing the affordable energy needed to create and sustain prosperity without wrecking the global climate with carbon dioxide emitted by fossil-fuel burning."

Experimentation at Columbia University

- HBT-EP: Active control of plasma instabilities and the magnetic boundary of a high-beta tokamak
- DIII-D: Collaboration to control MHD instabilities
- NSTX: Collaboration to control MHD instabilities
- CNT: Low-aspect ratio stellarator for non-neutral and positronic plasma
- LDX: Levitated superconducting dipole using the physics of space plasma to benefit fusion
- CTX: Nonlinear convective mixing, turbulence cascade in twodimensional interchange motion
- CLM: Understanding drift-wave turbulence

Levitated Dipole Experiment

MIT-Columbia University

Friday, June 5, 2009

63

Other fuel cycles are possible, but *more challenging*, e.g. D-D (³He) Fusion

6D

Something Different: Testing a New Approach to Fusion and Laboratory Plasma Confinement

ITER 500-700 MW D-T Fusion

Levitated Dipole 600 MW D-D(³He) Fusion

Friday, June 5, 2009

Lifting, Launching, Levitation, Experiments, Catching

Friday, June 5, 2009

Friday, June 5, 2009

Density Profile with/ without Levitation

- Procedure:
 - Adjust levitation coil to produce equivalent magnetic geometry
 - Investigate multiplefrequency ECRH heating
- Observe: Evolution of density profile with 4 channel interferometer
- Compare: Density profile evolution with supported and levitated dipole

Alex Boxer, MIT PhD, (2008)

Friday, June 5, 2009

Compare Supported vs. Levitated

Plasma Confined by a Supported Dipole

Plasma Confined by a Levitated Dipole

Friday, June 5, 2009

Inversion of Chord Measurements

Inversion of Chord Measurements

Friday, June 5, 2009

75

S81002027

15 msec

time (s)

Naturally Peaked Profiles Established Rapidly

Supported Interferometer (Radian) Initially (~ 4 msec), density rises equally for supported and levitated discharges n 4.99 5.00 5.01 5.02 5.03 5.04 5.05 Only when levitated, central time (s) 8 Levitated density continues to increase S81002026 Interferometer (Radian) 6 Natural profiles are created in ⁻ less than 15 msec! 0 4.99 5.00 5.01 5.02 5.03 5.04 5.05

Friday, June 5, 2009

Summary

- Fusion promises nearly unlimited carbon-free energy.
- Tremendous progress has been made both in understanding and in fusion parameters.
- Attractive and economical fusion power plants exist (on paper!) that require aggressive R&D programs, especially advanced materials!
- With the construction of NIF and the world-wide effort to construct ITER, there is a great opportunity to accelerate levitate fusion research.
- Successful R&D and aggressive implementation will allow fusion to contribute to world energy needs.

Friday, June 5, 2009